Русский
Библиографические ссылки статьи: “Математическая модель рецептора 3 типа к инозитол-3-фосфату (IP3R3)”
  1. Mitochondria, calcium and cell death: A deadly triad in neurodegeneration

    F. Celsi, P. Pizzo, M. Brini, S. Leo, C. Fotino, P. Pinton, R. Rizzuto

    Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2009, 1787, 335-344

  2. Calcium signaling differentiation during Xenopus oocyte maturation

    W. El-Jouni, B. Jang, S. Haun, K. Machaca

    Developmental Biology. 2005, 288, 514-525

  3. Calcium and mitochondria

    T. Gunter, D. Yule, K. Gunter, R. Eliseev, J. Salter

    FEBS Letters. 2004, 567, 96-102

  4. Calcium and mitochondria in the regulation of cell death

    S. Orrenius, V. Gogvadze, B. Zhivotovsky

    Biochemical and Biophysical Research Communications. 2015, 460, 72-81

  5. Calcium signalling and cell-fate choice in B cells

    A. Scharenberg, L. Humphries, D. Rawlings

    Nature Reviews Immunology. 2007, 7, 778-789

  6. Calcium-release channels: structure and function of IP<sub>3</sub> receptors and ryanodine receptors

    K. Woll, F. Van Petegem

    Physiological Reviews. 2022, 102, 209-268

  7. Structural Basis for the Modulation of Ryanodine Receptors

    D. Gong, N. Yan, H. Ledford

    Trends in Biochemical Sciences. 2021, 46, 489-501

  8. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities

    R. Aguayo-Ortiz, L. Espinoza-Fonseca

    International Journal of Molecular Sciences. , 21, 4146

  9. Crosstalk among Calcium ATPases: PMCA, SERCA and SPCA in Mental Diseases

    T. Boczek, M. Sobolczyk, J. Mackiewicz, M. Lisek, B. Ferenc, F. Guo, L. Zylinska

    International Journal of Molecular Sciences. , 22, 2785

  10. Metabolic regulation of the PMCA: Role in cell death and survival

    J. Bruce

    Cell Calcium. 2018, 69, 28-36

  11. Кальциевые осцилляции в тромбоцитах крови и их возможная роль в “интерпретации” клеткой информации из внешнего мира.

    Шахиджанов СС, Балабин ФА, Обыденный СИ, Атауллаханов ФИ, Свешникова АН

    Успехи Физических Наук. 2019, 189, 703-19

  12. Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3

    N. Paknejad, R. Hite

    Nature Structural &amp; Molecular Biology. 2018, 25, 660-668

  13. IP3 Receptor Activity Is Differentially Regulated in Endoplasmic Reticulum Subdomains during Oocyte Maturation

    M. Boulware, J. Marchant

    Current Biology. 2005, 15, 765-770

  14. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    l. Bezprozvanny, J. Watras, B. Ehrlich

    Nature. 1991, 351, 751-754

  15. IP3 Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer

    E. Kania, G. Roest, T. Vervliet, J. Parys, G. Bultynck

    Frontiers in Oncology. , 7,

  16. Structural basis for activation and gating of IP3 receptors

    E. Schmitz, H. Takahashi, E. Karakas

    Nature Communications. , 13,

  17. Structure of IP3 Receptor

    Yamazaki, H., Mikoshiba, K

    In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. 2009, ,

  18. The Number and Spatial Distribution of IP3 Receptors Underlying Calcium Puffs in Xenopus Oocytes

    J. Shuai, H. Rose, I. Parker

    Biophysical Journal. 2006, 91, 4033-4044

  19. All three IP <sub>3</sub> receptor isoforms generate Ca <sup>2+</sup> puffs that display similar characteristics

    J. Lock, K. Alzayady, D. Yule, I. Parker

    Science Signaling. 2018, 11,

  20. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration.

    G. De Young, J. Keizer

    Proceedings of the National Academy of Sciences. 1992, 89, 9895-9899

  21. Atp Regulation of Recombinant Type 3 Inositol 1,4,5-Trisphosphate Receptor Gating

    D. Mak, S. McBride, J. Foskett

    Journal of General Physiology. 2001, 117, 447-456

  22. Regulation by Ca2+ and Inositol 1,4,5-Trisphosphate (Insp3) of Single Recombinant Type 3 Insp3 Receptor Channels

    D. Mak, S. McBride, J. Foskett

    Journal of General Physiology. 2001, 117, 435-446

  23. A dynamic model of the type-2 inositol trisphosphate receptor

    J. Sneyd, J. Dufour

    Proceedings of the National Academy of Sciences. 2002, 99, 2398-2403

  24. Models of the inositol trisphosphate receptor

    J. Sneyd, M. Falcke

    Progress in Biophysics and Molecular Biology. 2005, 89, 207-245

  25. Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors

    E. Gin, M. Falcke, L. Wagner, D. Yule, J. Sneyd

    Journal of Theoretical Biology. 2009, 257, 460-474

  26. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1

    A. Sveshnikova, F. Ataullakhanov, M. Panteleev

    Molecular BioSystems. , 11, 1052-1060

  27. Occurrence of Calcium Oscillations in Human Spermatozoa Is Based on Spatial Signaling Enzymes Distribution

    J. Korobkin, F. Balabin, S. Yakovenko, E. Simonenko, A. Sveshnikova

    International Journal of Molecular Sciences. , 22, 8018

  28. Control of Platelet CLEC-2-Mediated Activation by Receptor Clustering and Tyrosine Kinase Signaling

    A. Martyanov, F. Balabin, J. Dunster, M. Panteleev, J. Gibbins, A. Sveshnikova

    Biophysical Journal. 2020, 118, 2641-2655

  29. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation

    S. Shakhidzhanov, V. Shaturny, M. Panteleev, A. Sveshnikova

    Biochimica et Biophysica Acta (BBA) - General Subjects. 2015, 1850, 2518-2529

  30. Metabolic signaling functions of ER–mitochondria contact sites: role in metabolic diseases

    E. Tubbs, J. Rieusset

    Journal of Molecular Endocrinology. 2017, 58, R87-R106

  31. The Type III Inositol 1,4,5-Trisphosphate Receptor Preferentially Transmits Apoptotic Ca2+ Signals into Mitochondria

    C. Mendes, D. Gomes, M. Thompson, N. Souto, T. Goes, A. Goes, M. Rodrigues, M. Gomez, M. Nathanson, M. Leite

    Journal of Biological Chemistry. 2005, 280, 40892-40900

  32. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer

    A. Bartok, D. Weaver, T. Golenár, Z. Nichtova, M. Katona, S. Bánsághi, K. Alzayady, V. Thomas, H. Ando, K. Mikoshiba, S. Joseph, D. Yule, G. Csordás, G. Hajnóczky

    Nature Communications. , 10,

  33. Molecular Basis of the Isoform-specific Ligand-binding Affinity of Inositol 1,4,5-Trisphosphate Receptors

    M. Iwai, T. Michikawa, I. Bosanac, M. Ikura, K. Mikoshiba

    Journal of Biological Chemistry. 2007, 282, 12755-12764

  34. Molecular Cloning of Mouse Type 2 and Type 3 Inositol 1,4,5-Trisphosphate Receptors and Identification of a Novel Type 2 Receptor Splice Variant

    M. Iwai, Y. Tateishi, M. Hattori, A. Mizutani, T. Nakamura, A. Futatsugi, T. Inoue, T. Furuichi, T. Michikawa, K. Mikoshiba

    Journal of Biological Chemistry. 2005, 280, 10305-10317

  35. LSODA (Livermore solver of ordinary differential equations)

    Petzold L, Hindmarsh A.

    Comput Math Res Div Lawrence Livermore Natl Lab Livermore CA. 1997, 24,

  36. COPASI and its applications in biotechnology

    F. Bergmann, S. Hoops, B. Klahn, U. Kummer, P. Mendes, J. Pahle, S. Sahle

    Journal of Biotechnology. 2017, 261, 215-220

  37. A methodology for performing global uncertainty and sensitivity analysis in systems biology

    S. Marino, I. Hogue, C. Ray, D. Kirschner

    Journal of Theoretical Biology. 2008, 254, 178-196

  38. Sensitivity Analysis for Chemical Models

    A. Saltelli, M. Ratto, S. Tarantola, F. Campolongo

    Chemical Reviews. 2005, 105, 2811-2828

  39. Sensitivity analysis of complex kinetic systems. Tools and applications

    T. Tur�nyi

    Journal of Mathematical Chemistry. 1990, 5, 203-248

  40. Parameter Estimation in Biochemical Pathways: A Comparison of Global Optimization Methods

    C. Moles, P. Mendes, J. Banga

    Genome Research. 2003, 13, 2467-2474

  41. COPASI—a COmplex PAthway SImulator

    S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer

    Bioinformatics. 2006, 22, 3067-3074

  42. Mechanisms of calcium oscillations and waves: a quantitative analysis

    J. Sneyd, J. Keizer, M. Sanderson

    The FASEB Journal. 1995, 9, 1463-1472

  43. Distinct Roles of Inositol 1,4,5-Trisphosphate Receptor Types 1 and 3 in Ca2+ Signaling

    M. Hattori, A. Suzuki, T. Higo, H. Miyauchi, T. Michikawa, T. Nakamura, T. Inoue, K. Mikoshiba

    Journal of Biological Chemistry. 2004, 279, 11967-11975

  44. The Physiologic Concentration of Inositol 1,4,5-Trisphosphate in the Oocytes of Xenopus laevis

    V. Luzzi, C. Sims, J. Soughayer, N. Allbritton

    Journal of Biological Chemistry. 1998, 273, 28657-28662

  45. Regulation of the Type III InsP3 Receptor by InsP3 and ATP

    R. Hagar, B. Ehrlich

    Biophysical Journal. 2000, 79, 271-278