Русский

Метод регистрации мембранного потенциала тромбоцитов с использованием пэтч-клампа в конфигурации перфорированная «целая клетка»

, , , ,

В данной работе рассмотрены подходы к регистрации мембранного потенциала тромбоцитов с использованием пэтч-клампа в конфигурации перфорированная «целая клетка». Проведены записи мембранного потенциала с использованием порообразующих агентов нистатина и сапонина и выбраны оптимальные условия, позволяющие регистрировать мембранный потенциал без нарушения гигаомного контакта и влияния на функциональную активность тромбоцита. Показана возможность регистрации осцилляций мембранного потенциала тромбоцита. Предложенный подход регистрации мембранного потенциала будет полезен при исследовании роли мембранного потенциала и механизмов его регуляции в функциональных ответах тромбоцитов.

0
0
#тромбоциты#пэтч-кламп#нистатин#сапонин#мембранный потенциал

Математическая модель рецептора 3 типа к инозитол-3-фосфату (IP3R3)

Рецептор к инозитол-1,4,5-трифосфату (IP3-рецептор) играет важную роль в кальциевой сигнализации клеток. При математическом моделировании преимущественно рассматривается IP3-рецептор 2 типа, а модель IP3 -рецептора 3 типа, учитывающая динамические свойства данного канала, не предложена. Целью настоящей работы является разработка математической модели IP3-рецептора 3 типа, учитывающей нелинейный характер зависимости активности рецептора от концентрации кальция и IP3 в цитозоле.

В работе предлагается система из шести независимых обыкновенных дифференциальных уравнений для описания развития кальциевого ответа на вызванную изменением концентрации IP3 активацию в системе с IP3 -рецептором 3 типа и кальциевой АТФазой SERCA2b. Параметры модели подбирались автоматически по ранее опубликованным экспериментальным данным.

В результате исследования показано, что в системе IP3R3-SERCA2b не наблюдается осцилляций в широком диапазоне параметров. Наиболее часто возникающим режимом функционирования системы является ответ «все-или-ничего», при котором в зависимости от концентрации IP3 либо не наблюдается мобилизации кальция, либо происходит полное опустошение кальциевых депо.

Таким образом, мы заключаем, что в условиях простейшей модели IP3R3 не демонстрирует способности к поддержанию кальциевых осцилляций, что согласуется с его предполагаемой ролью основного кальциевого канала сайтов контакта митохондрий с эндоплазматическим ретикулумом.

Схема модели кальциевой сигнализации (10)-(11). При активации клетки происходит повышение концентрации инозитол-1,4,5-трисфосфата (IP3) в цитозоле клетки (обозначен розовым). IP3 инициирует открытие канала-рецептора IP3R типа 3 в мембране ЭПР (обозначен синим), что приводит к выходу ионов кальция (зеленый кружок, Ca2+) из ЭПР в цитозоль. Кальциевая АТФаза (SERCA) катализирует обратный ток ионов Ca2+ из цитозоля в ЭПР. Голубой прямоугольник обозначает спонтанную утечку кальция из ЭПР в цитозоль.
0
0
#кальциевая сигнализация#инозитол-1,4,5-трифосфат#рецептор к инозитол-1,4,5-трифосфату 3 типа#компьютерное моделирование

Оценка функциональной активности нейтрофилов с применением красителей феноксазинового ряда

Нейтрофилы – основные лейкоциты крови, осуществляющие для защиты организма от патогенов фагоцитоз, образование нейтрофильных внеклеточных ловушек, дегрануляцию, а также генерацию активных форм кислорода (АФК), азота (АФА) и галогенов (АФГ). Хлорноватистая кислота (HOCl) образуется в биологических системах в присутствии пероксида водорода и хлорид-аниона в каталитическом цикле преимущественно фермента азурофильных гранул нейтрофилов – миелопероксидазы (МПО). HOCl играет важную роль в физиологических и патологических процессах, однако регистрация этого высокореакционного соединения затруднена в том числе из-за наличия многочисленных других АФК, АФА и АФГ, генерируемых клетками. В данной работе предложен комплексный подход исследования продукции АФК и АФГ нейтрофилов флуоресцентным методом с использованием феноксазиновых красителей целестинового синего B (CB) и галлоцианина (GC). Показано, что использование GC и CB позволяет оценить функциональный ответ нейтрофилов на стимулы различной природы (форболовый эфир PMA, компонент клеточной стенки бактерий fMLP, лектины растений).

Скорость изменения интенсивности флуоресценции зондов в суспензии активированных нейтрофилов. *p<0,05 относительно контроля
0
0
#активные формы кислорода#флуоресцентные краски#феноксазиновые красители

Преимущество применения лактадгерина для оценки экспонирования фосфатидилсерина в тромбоцитах

экспонированного фосфатидилсерина – аннексина V и лактадгерина. На примере тромбоцитов показано, что лактадгерин является более перспективным за счет большей чувствительности, и его применение, особенно в микроскопии, имеет преимущество в исследовании взаимосвязей сигнальных процессов при образовании прокоагулянтной субпопуляции тромбоцитов.

Иллюстрация тромбоцитов человека, положительных по лактадгерину, но отрицательных по аннексину V (отмечены стрелками). А – сравнение с аннексин V положительным тромбоцитом. Б – тромбоцит с функционирующими митохондриями (ТМРМ+) и связыванием с лактадгерином (помечен стрелкой). ДИК – дифференциально-интерференционный контраст; Наложение – сумма изображений всех флуоресцентных каналов и проходящего света. Длина масштабного отрезка 10 мкм, n=5.
0
0
#тромбоциты#фосфатидилсерин#лактадгерин#аннексин V

Системная биология и физиология: между 2022 и 2023

Первый год является решающим в жизни любого журнала. Несмотря на то, что официальное существование наш журнал "Системная биология и физиология" начал только в 2022 году, первые статьи были приняты к печати в английской версии больше года назад x [1], и в нем уже вышло семь номеров. В 2022 году была успешно зарегистрирована и запущена российская версия. Первый номер включил часть статей из английской версии [2], а настоящая статья открывает уже второй номер, содержащий новые оригинальные статьи.

Помимо десятков новых статей, которые уже начали цитироваться как в международной печати, так и в социальных сетях, в минувшем году наш журнал стал центром организации одноименной конференции (https://sbpreports.ru/conference/sbsp_2022), уже третьей по счету. Начиная с этого года, конференция стала тематической: первыми в череде тем стали внутриклеточная сигнализация и регуляция, от цитоскелета и метаболизма до механизмов клеточного старения и смерти. Как и в прошлом году, труды конференции были опубликованы в нашем журнале.

Мне хотелось бы выразить глубокую благодарность редакционной и технической команде журнала и конференции, усилия и энтузиазм которых сделали возможным появление и существование журнала. Спасибо всем нашим авторам и рецензентам за их труды! Поздравляю всех с Новым годом и желаю нам всем успешного развития в 2023 году.

0
0

Репарация плазматической мембраны, блеббинг и микровезикуляция: параллели и взаимосвязи

, ,

При активации или гибели клетки происходят деформации ее плазматической мембраны, которые грубо можно разделить на три категории. Первое явление, при котором происходит частичное локальное разрушение липидного бислоя и актинового кортекса и их последующее восстановление клеткой, относят к репарации мембраны. Вторая категория, при которой происходит образование выступающих наружу мембранных «пузырей», называется «блеббинг». И третья категория, при которой из плазматической мембраны образуются везикулы, содержащие белки мембраны и компоненты цитозоли, называется микровезикуляцией. Все эти явления играют важную роль в жизни организма: везикуляция является важным каналом обмена информацией между клетками, вместе с блеббингом она вносит существенный вклад в метастазирование опухолей, а нарушения репарации мембраны приводит к миодистрофиям. В литературе принято каждый из этих процессов изучать изолированно от других, хотя между ними есть множество параллелей и общих механизмов. Например, все три явления управляются перестройками актинового цитоскелета. В настоящем обзоре обсуждается вопрос, являются ли эти три процесса следствием одного и того же явления. Мы рассматриваем параллели, прослеживаемые в молекулярных механизмах этих явлений, которые приводят к гипотезе о возможности взаимообмена результатов исследований, посвященных процессам репарации мембраны, блеббинга и микровезикуляции.

Схема процессов репарации мембраны (А), блеббинга (Б) и микровезикуляции (В). Повреждение клеточной мембраны или активация клетки вызывает подъём кальция посредством его входа через разрыв мембраны или выхода из эндоплазматического ретикулума через каналы SERCA. Кальций вызывает цепь сигнальных событий, приводящую к активации GTPазы RhoA, которая активирует киназу ROCK, активирующую киназу LIMK, которая в свою очередь активирует миозин-II и кофилин, запуская формирование сократительных волокон. Под действием кальциевой сигнализации к месту повреждения также привлекаются белки ESCRT (см. текст). При активации клетки из-за усиленного актомиозинового сокращения поднимается внутриклеточное давление, что может запустить блеббинг или везикуляцию, вызвав отрыв мембраны от актинового кортекса. В нормальном состоянии мембрана фиксирована на актиновом кортексе при помощи белков ERM (ezrin, radixin, moesin).
0
0

Возможный подход к компьютерному моделированию формирования ламеллоподий тромбоцитов

Уважаемая редакция журнала Системная биология и физиология! В нашей предыдущей статье [1] была предложена компьютерная модель полимеризации актина при росте псевдоподии нейтрофила. В настоящем письме мы предлагаем вариант использования той же компьютерной модели для описания роста ламеллоподии тромбоцита.

Результаты расчетов, сделанных в предлагаемой компьютерной модели рости ламеллоподии. A. Типичная динамика роста ламеллоподии (k = 80 (M x s)-1, H = 3), синими стрелочками отмечены временные остановки роста. Б. Рассчетное распределение актина в модели, построенной с параметрами как на панели А. В. Электронная микрофотография распределения актина в ламеллоподии тромбоцита, воспроизведено из работы [6]. Г. Скорость роста ламеллоподии для данных, представленных на панели А. Д. Расчетная зависимость скорости роста ламеллоподии от скорости ветвления (константа k). Средние данные для n = 3 запусков модели. Стрелочка показывает значение k, при котором рост ламеллоподии останавливается, при бОльших значениях k рост не останавливался. На вставках показана плотность актина, размер квадрата 100 нм x 100 нм.
0
0

Анализ уровня окислительного стресса по оценке повреждения белка плазмы сывороточного альбумина под действием окислительного агента

Окислительный стресс, приводящий к окислительной модификации различных макромолекул, в том числе белков, сейчас рассматривается в качестве важного патогенетического звена многих заболеваний. В работе спектрофлуориметрическим методом изучено окислительное повреждение белка плазмы крови – бычьего сывороточного альбумина БСА – под действием окислительного агента – перекиси водорода H2O2. Показано зависимое от концентрации H2O2 тушение собственной флуоресценции БСА. Методами математического моделирования рассчитаны константы тушения флуоресценции БСА в растворах перекиси водорода. Обнаруженные зависимости в константах тушения флуоресценции объяснены как окислительным повреждением микроокружения триптофановых остатков БСА, так и изменением нативной конформации белковых глобул при окислительном повреждении. Более значительное перекисное повреждение БСА происходит при более низких значениях pH в связи тем, что H2O2 как окислитель действует сильнее в кислой среде. Зарегистрированное тушение собственной флуоресценции белка при повреждении окислительным агентом может быть использовано как медицинский метод оценки уровня окислительного стресса в организме при диагностике ряда заболеваний.

Спектры флуоресценции БСА (возб = 295 нм) в растворах (pH 5.0) с различными концентрациями H2O2. Концентрация H2O2: 0 мкМ (1), 5 мкМ (2), 20 мкМ (3), 70 мкМ (4), 140 мкМ (5), 200 мкМ (6).
0
0
#окислительный стресс#активные формы кислорода#свободные радикалы#сывороточный альбумин#тушение флуоресценции#молекулярная динамика

Моделирование агрегации тромбоцитов с помощью клеточного автомата

Агрегация тромбоцитов является важным процессом, отвечающим за своевременную остановку кровотечения. Одним из инструментов, позволяющих изучать данную систему, является компьютерное моделирование. Использование клеточного автомата в качестве модели дает возможность как изучать динамику отдельных агрегатов, так и исследовать поведение системы в целом. Целью данной работы было изучение агрегации тромбоцитов с помощью модели на основе клеточного автомата.  В результате была построена модель агрегации тромбоцитов, включающую в себя 4 процесса: диффузию, активацию, агрегацию и дезагрегацию с дальнейшим усложнением в виде добавления гидродинамического потока. Было показано, что в условиях потока основную массу агрегатов составляют димеры и тримеры, тогда как агрегаты больших размеров встречаются гораздо реже.

Блок-схема ключевых этапов работы алгоритма
0
0
#агрегация тромбоцитов#математическое моделирование#клеточный автомат

Аннексин V: связывающийся с мембраной белок с разнообразными функциями

Аннексин V – это эукариотический белок семейства аннексинов, который способен обратимо связываться сфосфолипидными мембранами кальций-зависимым образом. Он обладает сложным механизмом связывания с мембраной, который включает формирование двумерной сетки из тримеров аннексина и значительное изменение структуры мембраны. Конкретные функции аннексина V значительно неизучены, хотя предполагается его участие в свертывании крови, процессе восстановления мембраны и активности канала для ионов кальция. Использование аннексина V как маркера фосфатидилсерин-положительных клеток в in vitro и in vivo исследованиях критически важно для понимания роли этого белка в клеточных процессах.

Данный обзор сфокусирован на структуре аннексина V и механизмах и кинетике его связывания с мембраной. Специфичность липида и процесс мультимеризации будет описан в полной мере. Наконец, будут обсуждены некоторые предполагаемые функции аннексина V, включая ингибирование свертывания крови и влияние на активность транспорта ионов кальция.

 Структура Аннексина V. А. Вид с выпуклой стороны. Пурпурный, N-концевой хвост; синий, домен I; желтый, домен II; зеленый, домен III; красный, домен IV; оранжевый, ионы Ca2+. В центре аннексина V представлены заряженные остатки Asp280, Arg276, Asp92, Arg117, Glu112, Arg271. B. Вид из домена II. Выпуклая и вогнутая стороны отмечены черными стрелками. Са2+-связывающие центры расположены на выпуклой поверхности, N-концевой хвост — на вогнутой стороне. Рисунки были созданы в VMD для текущего обзора с использованием структуры 1ANX [29] из банка данных PDB. C. Выравнивание последовательностей аннексина V человека (ANXA5_HUMAN) и крысы (ANXA5_RAT). Остатки, которые образуют сайты связывания Ca2+, выделены зеленым и желтым цветом для человеческого и крысиного аннексина V соответственно. Выравнивание было выполнено с помощью UniProt Align.
0
0
#аннексин А5#мембранные взаимодействия#кальциевый канал#ингибирование коагуляции

Поиск по тегу
Open access

Найдено 28 статей